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Nonlinear travelling waves that are precursors to laminar–turbulent transition and
capture the main structures of the turbulent buffer layer have recently been found to
exist in all the canonical parallel flow geometries. We study the effect of polymer ad-
ditives on these ‘exact coherent states’ (ECS) in the plane Poiseuille geometry, focusing
on Reynolds numbers slightly above transition. Many key aspects of the turbulent
drag reduction phenomenon are found, including delay in transition to turbulence,
drag reduction onset threshold, and diameter and concentration effects. Furthermore,
examination of the ECS existence region leads to a distinct prediction, consistent with
experiments, regarding the nature of the maximum drag reduction regime: at suffi-
ciently high wall shear rates, viscoelasticity is found to completely suppress the normal
(i.e. streamwise-vortex-dominated) dynamics of the near-wall region, suggesting that
the maximum drag reduction regime is dominated by a distinct class of flow structures.

1. Introduction
The reduction of turbulent drag by polymer additives has received much attention

since it was first observed experimentally in the 1940s (see reviews by Lumley 1969;
Virk 1975; McComb 1990; Graham 2004). For a given flow rate, small polymer
concentrations, on the order of ten parts per million by weight, can reduce the
pressure drop in pipe or channel flow, for example, by 50 % or greater. After six
decades of research, the subject remains an active area of research, in part because of
applications but also because it lies at the intersection of two complex and important
fields, turbulence and polymer dynamics. A better understanding of this phenomenon
may in turn yield insights into the dynamics of both drag-reducing fluids and of
turbulent flows. The goal of the present work is to address turbulent drag reduction
in the context of the dominant structures in the turbulent buffer layer, an approach
which turns out to touch on many key aspects of the drag-reduction phenomenon.

We focus here on pressure-driven channel flow with average wall shear stress τw ,
of a fluid with dynamic viscosity η, density ρ and kinematic viscosity ν = η/ρ. The
average streamwise velocity Uavg and half-channel height l define outer scales for
the flow. Inner scales are the friction velocity uτ =

√
τw/ρ and the near-wall length

scale lw = ν/uτ . As usual, quantities expressed in terms of these so-called ‘wall units’
are denoted with a superscript +. The friction Reynolds number Reτ = uτ l/ν is simply
the half-channel height expressed in wall units. The Weissenberg number is denoted
Wi = λγ̇w = λu2

τ /ν, where λ is polymer relaxation time and γ̇w is the average wall
shear rate. Experimental results for a given fluid and flow geometry lie on curves of
constant elasticity parameter El =2λν/l2.
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Figure 1. (a) Schematic Prandtl–von Kármán plot. The dashed lines represent the experi-
mental paths by which specific polymer systems of different molecular weights, concentrations,
polymer–solvent pairs, etc., approach the MDR asymptote. (b) Schematic of polymer-induced
turbulent drag reduction based on existence regions for nonlinear coherent states.

In channel or pipe flow, drag-reduction results are often represented on a Prandtl–
von Kármán plot, Uavg/uτ vs. log Reτ (∼ log Wi − log El), shown schematically in
figure 1(a). Point A corresponds to transition to turbulence, which in Newtonian flow
occurs at Reτ ≈ 45 (Carlson, Widnall & Peeters 1982). One typical experimental path
for a given polymer solution and channel size is shown by the curve labelled ‘exp1’.
Along this path, once Reτ exceeds a critical value (point B), the slope of the data in-
creases from the Newtonian value, indicating onset of drag reduction. As Reτ increases,
data eventually approaches a new curve at point C. This curve, the so-called maximum
drag reduction (MDR) asymptote, is insensitive to polymer concentration, molecular
weight or polymer species – all results collapse onto it at large Reτ ; it is a universal fea-
ture of drag reduction by polymers. For large channels or low polymer concentrations,
the value of Reτ at the onset of drag reduction is independent of polymer concentra-
tion and corresponds to a critical Weissenberg number. For small channels or large
concentrations, however, diameter and concentration effects have been observed exper-
imentally (Virk 1975): specifically, there exists a critical pipe diameter below which, or
a critical polymer concentration above which, the flow behaviour directly transitions
from laminar flow to the maximum drag reduction curve as Reτ increases. An
experimental path showing this effect is labelled ‘exp2’; transition from laminar flow to
MDR occurs at point D. Therefore, we see that all the important transitions – onset of
turbulence, onset of drag reduction and approach to MDR asymptote – can be made
to occur close together by appropriate choice of channel size or polymer concentration.

Studies of drag-reducing fluids indicate that near the onset of drag reduction, the
effects of the polymer are confined primarily to the buffer layer region of the flow (Virk
1975; Donohue, Tiederman & Reischman 1972). Experimental observations and direct
numerical simulation (DNS) studies show that the dominant structures in the buffer
layer are pairs of counter-rotating streamwise-aligned vortices (Robinson 1991; Jeong
et al. 1997). These vortices pull slower moving fluid away from the wall, forming low-
speed streamwise velocity streaks. In drag-reducing flows, these structures are modified
by polymers: the buffer region thickens (Virk 1975), the coherent structures in this
region shift to larger scales (Donohue et al. 1972; Sureshkumar, Beris & Handler
1997; den Toonder et al. 1997), and the bursting rate decreases (Donohue et al. 1972).
Recent experimental results (Warholic, Massah & Hanratty 1999; Warholic et al.
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2001) reveal that in the maximum drag reduction region the ejections from the wall
are eliminated and the near-wall vortices that sustain turbulence in a Newtonian
fluid are completely destroyed. Low-speed streamwise velocity streaks are essentially
absent. A recent DNS study (Li, Sureshkumar & Khomami 2006) also shows that in
this regime the streamwise-aligned vortices are greatly or almost entirely suppressed,
while the number of hairpin type vortices is increased. These observations suggest that
the coherent structures in the buffer layer region are crucial in addressing rheological
drag reduction in wall-bounded turbulent flows.

A recent advance in the understanding of these important near-wall structures has
come with the recognition that, in all the canonical parallel geometries (plane Couette,
plane Poiseuille, pipe) the Navier–Stokes equations support nonlinear travelling wave
states, the family of so-called ‘exact coherent states’ or ECS (Nagata 1986; Clever &
Busse 1997; Waleffe 1998, 2001, 2003; Faisst & Eckhardt 2003; Wedin & Kerswell
2004). Jiménez and coworkers (Jiménez & Pinelli 1999; Jiménez & Simens 2001) have
found related states in spatially filtered DNS, showing the autonomous nature of the
near-wall behaviour. The flow structure of these states is a mean shear and a pair of
staggered streamwise-aligned counter-rotating vortices, as is found in the turbulent
buffer layer. In the plane Poiseuille geometry, ECS come into existence at Reτ of
44.2 (Waleffe 2003), very close to the experimentally observed Reτ of ∼ 45 for the
transition to turbulence (Carlson et al. 1982). The spanwise wavelength L+

z =105.5
of the ECS at onset closely matches the streak spacing of ∼ 100 wall units widely
observed in experiments over a large range of Reynolds numbers (Robinson 1991).
Direct numerical simulations of turbulence in ‘minimal channel flow’, i.e. flow in the
smallest computational domain that reproduces the velocity field statistics of near-
wall turbulence, give a range for the streamwise length L+

x of 250–350, compared to
L+

x = 273.7 for the ECS, and a spanwise length that is again approximately 100 wall
units (Jiménez & Moin 1991). This minimum channel contains a single wavelength
of a wavy streak and a pair of quasi-streamwise vortices, which is the same structure
seen in the ECS. A conditional sampling study of coherent structures in a larger
scale DNS (Jeong et al. 1997) indicates that the dominant structures near the wall
in turbulent channel flow are counter-rotating streamwise-aligned vortices with a
streamwise length L+

x ∼ 250, a spanwise length L+
z ∼ 100 and a wall-normal size of

y+ ∼ 50, which agrees with the scales of the ECS at onset. The ECS also capture
the location of the peak, at y+ ≈ 12, in the production of turbulent kinetic energy
for wall-bounded turbulence (Kim, Moin & Moser 1987; Li, Stone & Graham 2005).
In short, the ECS are precursors to turbulence and their structure and length scales
closely match experimentally observed near-wall behaviour.

Because the first effects of polymer arise in the buffer region, whose structure the
ECS evidently capture, these flows provide a natural starting point for understanding
drag reduction. In prior work, we have studied the initial effects of viscoelasticity on
ECS in the plane Couette and plane Poiseuille geometries (Stone, Waleffe & Graham
2002; Stone & Graham 2003; Stone et al. 2004; Li et al. 2005). The primary effect
was found to be the weakening of the streamwise vortices, as well as changes in the
statistics of the velocity fluctuations that are consistent with experimental observations
at low levels of drag reduction. The present work takes a broader view, examining
the region of parameter space (Re, Wi) in which ECS exist and its connection
to experimental observations. In particular, we examine the parameter regime just
above transition to turbulence, noting that, as mentioned above, onset of turbulence,
onset of drag reduction and approach to the MDR asymptote can all occur in this
region.
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2. Formulation
We consider pressure-driven channel flow with no slip at the channel walls; vx ,

vy , and vz are streamwise, wall-normal, and spanwise components of the velocity, v,
respectively. Reflection symmetry is imposed at the channel centreline. The laminar
centreline velocity, U , and the half-channel height, l, are used to scale velocity and
position, respectively. The average wall shear rate γ̇w is given by 2U/l. Time, t , is
scaled with l/U , and pressure, p, with ρU 2. The stress due to the polymer, τp , is
non-dimensionalized with the polymer elastic modulus, G = ηp/λ, where ηp is the
polymer contribution to the zero-shear-rate viscosity. The momentum balance and
the equation of continuity are

Dv

Dt
= −∇p + β

1

Re
∇2v + (1 − β)

2

ReWi
(∇ · τp), (2.1)

∇ · v = 0. (2.2)

Here β = ηs/(ηs +ηp) is the fraction of the total zero-shear viscosity that is due to the

solvent, Re = ρUl/(ηs + ηp) and Reτ =
√

2Re.
The polymer stress is computed with the widely used FENE-P constitutive model

(Bird et al. 1987):

α

1 − tr α/b
+

Wi

2

(
Dα

Dt
− α · ∇v − ∇vT · α

)
=

bδ

b + 2
, (2.3)

where α is a non-dimensional conformation tensor and b is proportional to the
maximum extension of the dumbbell – trα cannot exceed b. The polymer contribution
to the stress is given by

τp =
b + 5

b

(
α

1 − tr α/b
−

(
1 − 2

b + 2

)
δ

)
. (2.4)

The extensibility parameter Ex=2b(1 − β)/3β measures the relative magnitude of
the polymer and solvent contributions to the steady-state extensional stress in uniaxial
extension at high extension rate. We consider the situation 1 − β � 1, in which case
shear-thinning is negligible, as the polymer only contributes a very small amount to the
total shear viscosity of the solution. In this situation, significant effects of the polymer
on the flow are expected only when Ex � 1. Finally, recall that experimental results
for a given fluid and flow geometry lie on curves of constant elasticity parameter
El= 2λ(ηs + ηp)/ρl2 =Wi/Re.

The conservation and constitutive equations are solved through a Picard iteration
in a travelling reference frame – the wave speed is part of the solution. A Newtonian
ECS, as computed in Waleffe (1998), is first used to calculate the polymer stress tensor,
τp , by inserting the velocity field in the evolution equation for α and integrating for
a short length of time, usually one time unit (l/U ). For this τp , a steady state of
the momentum and continuity equations is found by Newton iteration. The resulting
velocity field, v, is used to compute the new τp , and the process is repeated until the
velocity and polymer field converge to a steady state.

The momentum and continuity equations are discretized using a Fourier–Chebyshev
formulation with typically a 9 × 17 × 9 grid. The conformation tensor, α, is discretized
with a third-order, compact upwind difference scheme (Lele 1992; Min, Yoo & Choi
2001). In this, as in most previous computational studies of polymers in turbulent
flows, we have found it necessary to add an artificial stress diffusion term ∇2α/Sc Re,
to the right-hand side of (2.3) to achieve numerical stability. Correspondingly,
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Figure 2. (a) Bifurcation diagram for Newtonian and viscoelastic ECS. (b) Existence
boundaries and drag reduction regimes for viscoelastic ECS. For all results, Lx = 2π/1.0148
and Lz = 2π/2.633.

boundary conditions must be imposed for α. At the wall, α is set equal to the result
of integrating the original equation without diffusivity added. Reflection symmetry
is imposed at the channel centreline. The Schmidt number, Sc, which is the ratio
of momentum diffusivity to stress diffusivity, is set to 1.0. This value of Sc, though
artificially small, is greater than or of the same order of magnitude as that used in
many DNS studies (Sureshkumar et al. 1997; Ptasinski et al. 2003; Sureshkumar &
Beris 1995; Sibilla & Baron 2002). In the range of Sc where solutions can be obtained,
the bifurcation diagrams shown in figure 2(a) are insensitive to its value. The stress
diffusion term is integrated implicitly by the Crank–Nicholson method, with the other
terms of the equation integrated using the Adams–Bashforth method. This equation
is solved on a finer mesh than the momentum–continuity pair, typically 48 × 49 × 48.
Higher resolutions (10 × 19 × 10 for the momentum–continuity pair and 64 × 65×64
for the polymer stress) show less than 0.35 % change in the centreline mean streamwise
velocity Umax at Re= 1600 and Wi= 32 compared to the lower resolutions.

3. Results and discussion
In the Newtonian limit, the minimum Reynolds number at which ECS exist is

Re = 977 (Reτ = 44.2), with Lx = 2π/1.0148 and Lz = 2π/2.633. For reasons discussed
below, all results presented here are with these ‘optimal’ length scales. In inner units
these lengths correspond at Reτ = 44.2 to L+

x = 273.7 and L+
z = 105.5. These states

arise via a saddle-node bifurcation as shown in figure 2(a). The solutions are plotted
using the maximum in the root-mean-square wall-normal velocity fluctuations for
the solution, v

′2
y

1/2
. (Hereafter, an overbar indicates that the variable is averaged

over the streamwise and spanwise directions.) The solutions with higher maximum
wall-normal velocity at a given Re are called ‘high-drag’ solutions due to their lower
mean velocity at the centreline of the channel compared to the ‘low-drag’ solutions.
All results in this paper are for the high-drag states. Although both solutions are
unstable, their status as precursors to transition and their structural similarity to
buffer layer turbulence suggest that they are saddle points that underlie in part the
strange attractor of turbulent flow.

Figure 2(a) indicates that the addition of polymer changes the Reynolds number
Remin at which the ECS come into existence (i.e. the position of the saddle-node
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Figure 3. (a) Mean streamwise velocity for Newtonian and viscoelastic ECS on the ECS
existence boundary. (b) Mean streamwise velocity for Newtonian and viscoelstic ECS along
experimental path El = 0.019.

bifurcation points). Curves of ECS existence boundaries Remin vs. Wi are given for
two parameter sets by the thick solid curves on figure 2(b). These separate the
region where the ECS can exist (above the curves) from the region where no ECS
exist, for the given value of Ex. For the β = 0.97, Ex = 100 case, we also obtained
existence boundaries with Lx and/or Lz changed from the Newtonian optimal values
by ±20 % (8 sets of wavelength pairs). All these have a very similar shape to the
boundary obtained with the ‘optimal’ values, and all but one are uniformly above
it. For the case where Lx was increased by 20 % and Lz left the same, the existence
curve is slightly (no more than 5 %) lower in the region 25 � Wi � 35 and more
strongly increasing at higher Wi. We thus conclude that the results shown very nearly
represent the global existence boundary for the ECS.

While at low Wi there is a slight decrease in Remin from the Newtonian value, once
Wi exceeds about 45, Remin for Ex = 100 is more than doubled. This dramatic increase
in Remin after onset is consistent with the experimental observation that the transition
to turbulence in a polymer solution is delayed to higher Re than in the Newtonian
case (Giles & Pettit 1967; White & McEligot 1970; Escudier, Presti & Smith 1999).
The curve labelled ‘drag reduction onset’ denotes where the centreline mean velocity
Umax of the viscoelastic upper branch ECS first exceeds that of the Newtonian upper
branch ECS at the same Reynolds number. This onset Weissenberg number Wionset

decreases with increasing Reynolds number; it approaches Wionset ≈ 9 at Re ≈ 2400,
which is slightly high compared to the result Wionset ≈ 6 predicted by two recent
viscoelastic DNS studies (Housiadas & Beris 2003; Min et al. 2003), but in those
studies El was significantly smaller, and the onset Reynolds number correspondingly
larger, than the values considered here – and in any case there is no reason to expect
exact correspondence between onset values from DNS results for fully turbulent flow
and the ECS, as the former is more complex than the latter.

Figure 3(a) shows mean velocity profiles at six different sets of parameter values,
each corresponding to a point on the existence boundary for the ECS (i.e. a bifurcation
point). Remarkably, they all fall on virtually the same curve, when plotted in outer
units. Therefore, at least for the values of Re and Wi that are currently accessible in
our simulations, we observe that mean velocity profiles at onset of the ECS have a
roughly universal form.
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Figure 4. (a) Streamwise velocity for an exact coherent state at Re= 2200 (Reτ =66.3),
Wi= 41.8, Ex = 100, β = 0.97. Range: 0 (black) – 0.57 (white). (b) Trace of the polymer stress
for the same state. Range: 0 (black) –3300 (white).

We now turn to the study of the evolution of the ECS along some experimental
paths, lines of constant El. Two such paths, the thin solid lines with hollow symbols,
are shown in figure 2(b). Consider first the case El= 0.010; as Re and Wi increase,
the path intersects the ECS existence boundary at point A and the drag-reduction
onset threshold curve at point B, where the transition to turbulence and the onset
of drag reduction occur, respectively. Turning to the case El= 0.019, mean velocity
profiles expressed in wall units are shown for various values of Re in figure 3(b). For
this parameter set, drag reduction (relative to the Newtonian ECS at the same Re) is
observed immediately upon onset of the ECS. Along with drag reduction, enhanced
streamwise velocity fluctuations and the reduced wall-normal and spanwise velocity
fluctuations are found, consistent with experimental observations and DNS results at
low to moderate degrees of drag reduction (Virk 1975; Sureshkumar et al. 1997). The
effect of viscoelasticity can also be observed in the reduced Reynolds shear stress
and ultimately can be traced to the suppression of the streamwise vortices by the
viscoelasticity (Stone et al. 2002, 2004; Li et al. 2005; Dubief et al. 2005). Figure 4
shows fields of vx and tr τp on the El= 0.019 path at Wi= 41.8, Re= 2200 (the open
circle just to the left of the label ‘C’ on figure 2b). The region of high polymer stress
clearly ‘wraps around’ the streamwise vortices, and the corresponding polymer force
(∼ ∇ · τp) is in direct opposition to the vortex motions.

Continuing upward in Re and Wi at El = 0.019, the path re-intersects the ECS
existence boundary, at point C in figure 2(b). (We suspect that this will also happen
in the El= 0.010 case, but at higher Re and Wi than are accessible with our current
computational approach.) Above this point the flow can no longer sustain these
ECS; viscoelasticity completely suppresses the near-wall vortical structures. This
result is consistent with experimental observations and DNS results in the MDR
regime that, at least at relatively low friction Reynolds number, the eruptions of low-
momentum fluid from the wall are eliminated and the near-wall streamwise vortices
are completely destroyed (Warholic et al. 1999, 2001; Li et al. 2006). Experimental
results also show that in the MDR regime, the Reynolds shear stress is much
smaller than the Newtonian value (Warholic et al. 1999, 2001; Ptasinski et al.
2001), and streamwise velocity fluctuations decrease to levels close to or below
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the Newtonian value (Warholic et al. 1999). All these observations suggest that the
turbulent production and dissipation take place by a different mechanism in the MDR
regime than at lower degrees of drag reduction. Although our study does not reveal
this mechanism directly, it does suggest that the disappearance of ECS is related
to the MDR regime. This result encourages us to take a broader view, examining
the region of parameter space (Re, Wi) in which ECS exist and its connection to
experimental observations.

Figure 1(b) is a schematic based on the results shown in figure 2(b). Line 1 represents
the ECS existence boundary at constant Ex. Line 2 represents the drag reduction
onset threshold, which separates the ECS existence region into ‘turbulence without
drag reduction’ and ‘turbulence with low or moderate drag reduction’ regions. Line
‘exp1’ represents an experimental path at constant El, which passes through the ECS
existence region. In this case, as Re (and Wi) increases, this path intersects with the
ECS existence boundary at point A and drag reduction onset threshold at point B,
where the transition to turbulence and the drag reduction onset occur, respectively.
Note the correspondence with points A and B on the schematic Prandtll–von Kármán
plot, figure 1(a), as well as on figure 2(b). As Re and Wi continue to increase along
this path, the system will eventually exit the ECS existence region at point C, where
the flow can no longer sustain these ECS. Experimental and DNS results show that in
the MDR regime, near-wall streamwise vortical structures are essentially absent. Our
results together with these observations suggest that the loss of ECS in this regime
may be somehow related to the approach of the MDR regime, in which other types
of coherent travelling wave states (e.g. structures with very different length scales,
temporally intermittent structures, hairpins, Tollmien–Schlichting waves, intrinsically
elastic structures, etc.) may be unmasked and become dominant. This possibility is
represented by line 3 in figure 1(b), a hypothetical existence boundary for a distinct
class of flow structures that exists at high Wi. In this scenario, the crossing of
path exp1 at point C represents the transition to the MDR regime. This scenario,
incorporating transition to turbulence, onset of drag reduction and approach of the
MDR regime, is consistent with the behaviour on experimental path ‘exp1’ shown in
figure 1(a).

Now consider the experimental path ‘exp2’ on figure 1(b). This path corresponds
to a value of El that does not intersect with the ECS existence region at all. For the
conditions β = 0.97, Ex= 100 shown on figure 2(b), this situation arises if El � 0.023.
The scenario on figure 1(b) would predict in this case that, with the increase of Re
and Wi, the flow behaviour directly transitions from laminar to MDR at point D. As
El is inversely proportional to l2 (or R2 in pipe flow) this prediction is consistent with
experiments in small-diameter pipes – the ‘diameter effect’ (Virk 1975), as exemplified
by experimental path exp2 in figure 1(a). The ‘concentration effect’ can also be
captured by this scenario, as we now describe. The quantity S =1 − β is proportional
to polymer concentration in dilute solution. Using S, the parameters Ex and El can
be written as Ex= 2

3
bS/(1 − S) and El= 2ληs/ρl2(1 − S). Thus while El is virtually

unchanged by a change in S, Ex is proportional to it. An increase in Ex compresses
the ECS existence boundary leftward, as shown in figure 2(b). Thus, as Ex increases,
eventually a given experimental path can no longer intersect the ECS existence region,
resulting again in flow behaviour that directly transitions from laminar to MDR.

Finally, we observe that the existence boundaries can be interpreted in terms of
length scales. Recall that the half-height of the channel, expressed in wall units, is
simply Reτ =

√
2Re. Thus the existence boundary corresponds to the minimum half-

channel height in which an ECS can exist, as a function of Wi. Points where a line
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of constant El intersects the existence boundary are points where the channel height
and the minimum height for the existence of an ECS coincide.

4. Conclusions
Many observations of drag reduction in dilute polymer solutions are mirrored by the

effect of viscoelasticity on the channel-flow ECS discovered by Waleffe (Waleffe 2001,
2003). At least at the Reynolds number considered here, the transition behaviours
from laminar to turbulent flow, from no drag reduction to drag reduction, and from
moderate drag reduction to MDR can be connected to the birth, evolution and death
of these ECS, respectively. Our results and the scenario that we infer from them yield
explicit predictions, testable by DNS, for all these phenomena.

The authors are indebted to Fabian Waleffe for many illuminating discussions and
for sharing his code for computation of the Newtonian exact coherent states. This
work was supported by the National Science Foundation, grant CTS-0328325, and
the Petroleum Research Fund, administered by the American Chemical Society.

REFERENCES

Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids,
2nd edn., vol. 2. Wiley.

Carlson, D. R., Widnall, S. E. & Peeters, M. F. 1982 A flow-visualization study of transition in
plane Poiseuille flow. J. Fluid Mech. 121, 487–505.

Clever, R. M. & Busse, F. H. 1997 Tertiary and quaternary solutions for plane Couette flow.
J. Fluid Mech. 344, 137–153.

Donohue, G. L., Tiederman, W. G. & Reischman, M. M. 1972 Flow visualization of the near-wall
region in a drag-reducing channel flow. J. Fluid Mech. 50, 559–575.

Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New
answers on the interaction between polymers and vortices in turbulent flows. Flow, Turbulence
Combus. 74, 311–329.

Escudier, M. P., Presti, F. & Smith, S. 1999 Drag reduction in the turbulent pipe flow of polymers.
J. Non-Newtonian Fluid Mech. 81, 197–213.

Faisst, H. & Eckhardt, B. 2003 Travelling waves in pipe flow. Phys. Rev. Lett. 90, 224502.

Giles, W. B. & Pettit, W. T. 1967 Stability of dilute viscoelastic flows. Nature 216, 470–472.

Graham, M. D. 2004 Drag reduction in turbulent flow of polymer solutions. In Rheology Reviews
2004 (ed. D. M. Binding & K. Walters), pp. 143–170. British Society of Rheology.

Housiadas, K. D. & Beris, A. N. 2003 Polymer-induced drag reduction: Effects of variations in
elasticity and inertia in turbulent viscoelastic channel flow. Phys. Fluids 15, 2369–2384.

Jeong, J., Hussian, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent
channel flow. J. Fluid Mech. 332, 185–214.
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